Cogeneration System
Cogeneration System
Cogeneration, often known as combined heat and power (CHP), is the simultaneous production of electricity and usable heat using a heat engine or power plant.
Because cogeneration uses otherwise wasted heat from producing electricity for some useful use, it is a more efficient use of fuel or heat. CHP plants recover thermal energy for heating that would otherwise be lost. District heating using combined heat and power is another name for this. One example of decentralized energy is small CHP plants. Absorption refrigerators may also utilize by-product heat at moderate temperatures (100-180 °C, 212-356 °F) for chilling.
First, a generator powered by a gas or steam turbine is driven by the delivery of high-temperature heat. After that, the low-temperature waste heat is put to use heating water or a room. It is possible to employ a gas engine or diesel engine at lesser sizes (usually below 1 MW). Due to their propensity to generate relatively low-grade heat, geothermal power facilities frequently engage in cogeneration. To generate energy at all, adequate thermal efficiency may be required, requiring binary cycles. Nuclear power stations utilize cogeneration less frequently than equivalent chemical power plants because of NIMBY and safety concerns, while district heating is less effective in locations with lower population densities due to transmission losses.
Some of the early electrical generation plants used cogeneration. Industries that generated their own power utilized exhaust steam for process heating before central stations provided electricity. Large office and apartment complexes, hotels, and retail establishments frequently produced their own electricity and heated their structures with waste steam. These CHP activities persisted for many years after grid energy became available because the early bought power was so expensive
Comments